#include "zsm_backend.hpp" #include extern "C" { #include "x16emu/glue.h" #include "x16emu/vera_pcm.h" #include "x16emu/vera_psg.h" #include "x16emu/ymglue.h" } #include #include #include "file_backend.hpp" #include #include #include #define HZ (AUDIO_SAMPLERATE) #define BUFFERS 32 void ZsmBackend::load(const char *filename) { memset(&spec, 0, sizeof(spec)); spec.format = AUDIO_S16SYS; spec.samples = 100; spec.channels = 2; spec.freq = PSG_FREQ; spec.size = 100 * 2 * sizeof(int16_t); file = open_file(filename); char magic[2]; file->read(magic, 2, 1); if (magic[0] != 0x7a || magic[1] != 0x6d) { throw std::exception(); } uint8_t version; file->read(&version, 1, 1); uint8_t loop_point[3]; file->read(loop_point, 3, 1); this->loop_point = loop_point[0] | ((uint32_t)(loop_point[1]) << 8) | ((uint32_t)(loop_point[2]) << 16); file->read(loop_point, 3, 1); this->pcm_offset = loop_point[0] | ((uint32_t)(loop_point[1]) << 8) | ((uint32_t)(loop_point[2]) << 16); pcm_offset += 3; file->read(&fm_mask, 1, 1); file->read(loop_point, 2, 1); this->psg_channel_mask = loop_point[0] | ((uint16_t)(loop_point[1]) << 8); file->read(loop_point, 2, 1); this->tick_rate = loop_point[0] | ((uint16_t)(loop_point[1]) << 8); file->read(loop_point, 2, 1); // Reserved. music_data_start = file->get_pos(); this->loop_point += music_data_start; file->seek(pcm_offset, SeekType::SET); file->read(loop_point, 1, 1); pcm_offset++; pcm_data_offs = ((((uint16_t)loop_point[0]) + 1) * 16) + pcm_offset; file->seek(music_data_start, SeekType::SET); this->loop_point = std::max(this->loop_point, (uint32_t)music_data_start); double prev_time = 0.0; double time = 0.0; double tmpDelayTicks = 0.0; loop_pos = -1.0; uint32_t prev_pos = music_data_start; while (true) { tmpDelayTicks -= get_delay_per_frame(); if (tmpDelayTicks < 0.0) { ZsmCommand cmd = get_command(); size_t cur_pos = file->get_pos(); if (cur_pos >= this->loop_point && this->loop_pos < 0) { if (cur_pos > this->loop_point) { this->loop_point = prev_pos; loop_pos = prev_time; } else { loop_pos = time; this->loop_point = cur_pos; } } if (cmd.id == ZsmEOF) { break; } else if (cmd.id == Delay) { time += ((double)cmd.delay) / ((double)(tick_rate)); tmpDelayTicks += cmd.delay; } prev_pos = file->get_pos(); prev_time = time; } } if (this->loop_pos < 0.0) { this->loop_pos = 0.0; this->loop_point = music_data_start; } length = time; music_data_len = file->get_pos(); switch_stream(0); loop_end = length; loop_start = this->loop_pos; fm_stream = SDL_NewAudioStream(AUDIO_S16SYS, 2, YM_FREQ, AUDIO_S16SYS, 2, PSG_FREQ); DEBUG.writefln("fm_stream: %ld -> %ld", YM_FREQ, PSG_FREQ); } extern SDL_AudioSpec obtained; void ZsmBackend::switch_stream(int idx) { YM_Create(YM_FREQ); YM_init(YM_FREQ/64, 60); YM_reset(); psg_reset(); pcm_reset(); for (uint8_t i = 0; i < 16; i++) { psg_writereg(i * 4 + 2, 0); } this->cpuClocks = 0.0; this->delayTicks = 0.0; this->ticks = 0.0; } void ZsmBackend::cleanup() { delete file; file = nullptr; audio_buf.clear(); SDL_FreeAudioStream(fm_stream); fm_stream = nullptr; } void ZsmBackend::tick(bool step) { delayTicks -= 1; const double ClocksPerTick = ((double)HZ) / ((double)tick_rate); ssize_t ticks_remaining = ClocksPerTick; while (delayTicks <= 0) { ZsmCommand cmd = get_command(); switch (cmd.id) { case ZsmEOF: { if (step) { file->seek(this->loop_point, SeekType::SET); this->position = loop_pos; } else { throw std::exception(); } } break; case PsgWrite: { psg_writereg(cmd.psg_write.reg, cmd.psg_write.val); } break; case FmWrite: { for (uint8_t i = 0; i < cmd.fm_write.len; i++) { YM_write_reg(cmd.fm_write.regs[i].reg, cmd.fm_write.regs[i].val); while (YM_read_status()) { size_t clocksToAddForYm = 64; ticks_remaining -= clocksToAddForYm; if (ticks_remaining < 0) { delayTicks -= 1; cpuClocks += ClocksPerTick; ticks_remaining += ClocksPerTick; } audio_step(clocksToAddForYm); } } } break; case Delay: { delayTicks += cmd.delay; position += ((double)cmd.delay) / ((double)(tick_rate)); } break; case ExtCmd: { //cmd.extcmd.channel switch (cmd.extcmd.channel) { case 0: { for (size_t i = 0; i < cmd.extcmd.bytes; i += 2) { switch (cmd.extcmd.pcm[i]) { case 0: { // ctrl pcm_write_ctrl(cmd.extcmd.pcm[i + 1]); } break; case 1: { // rate pcm_write_rate(cmd.extcmd.pcm[i + 1]); } break; default: { // trigger size_t file_pos = file->get_pos(); uint8_t ctrl = pcm_read_ctrl(); pcm_write_ctrl(ctrl | 0x80); uint16_t pcm_idx = cmd.extcmd.pcm[i + 1]; uint16_t instdef = pcm_idx * 16; file->seek(pcm_offset + instdef, SeekType::SET); uint8_t geom; file->read(&geom, 1, 1); ctrl = pcm_read_ctrl() & 0x0F; ctrl |= geom & 0x30; pcm_write_ctrl(ctrl); uint8_t bytes[10]; file->read(bytes, 10, 1); loop_rem = bytes[9]; loop_rem <<= 8; loop_rem |= bytes[8]; loop_rem <<= 8; loop_rem |= bytes[7]; loop = loop_rem; islooped = bytes[6] & 0x80; remain = bytes[5]; remain <<= 8; remain |= bytes[4]; remain <<= 8; remain |= bytes[3]; cur = bytes[2]; cur <<= 8; cur |= bytes[1]; cur <<= 8; cur |= bytes[0]; cur += pcm_data_offs; loop += cur; loop_rem = remain - loop_rem; file->seek(file_pos, SeekType::SET); } break; } //cmd.extcmd.pcm audio_step(0); } break; } // Nothing handled yet. } } break; } } audio_step(ticks_remaining); cpuClocks += ClocksPerTick; } void ZsmBackend::add_clocks(double amount, bool step) { const double ClocksPerTick = ((double)HZ) / ((double)tick_rate); cpuClocks = std::fmod(cpuClocks, ClocksPerTick); double prevCpuClocks = cpuClocks; size_t prevIntCpuClocks = prevCpuClocks; double tickDelta = amount / ClocksPerTick; double prevTicks = ticks; ticks += tickDelta; size_t prevIntTicks = prevTicks; size_t intTicks = ticks; size_t intTicksDelta = intTicks - prevIntTicks; cpuClocks += intTicks * ClocksPerTick; double remainder = amount - (intTicksDelta * ClocksPerTick); size_t intCpuClocks = cpuClocks; size_t intCpuClockDelta = intCpuClocks - prevIntCpuClocks; double initialTicks = prevCpuClocks / ClocksPerTick; for (size_t i = 0; i < intTicksDelta; i++) { double preTickCpuClocks = cpuClocks; delayTicks--; tick(step); double neededCpuClocks = preTickCpuClocks + ClocksPerTick; if (cpuClocks < neededCpuClocks) { cpuClocks = neededCpuClocks; } } if (remainder >= 0) { cpuClocks += remainder; audio_step(remainder); } } size_t ZsmBackend::render(void *buf, size_t maxlen) { size_t sample_type_len = 2; maxlen /= sample_type_len; while (audio_buf.size() <= maxlen) { tick(true); } size_t copied = copy_out(buf, maxlen) * sample_type_len; maxlen *= sample_type_len; return copied; } uint64_t ZsmBackend::get_min_samples() { return spec.size; } std::optional ZsmBackend::get_max_samples() { return get_min_samples(); } ZsmCommand ZsmBackend::get_command() { ZsmCommandId cmdid; uint8_t cmd_byte; file->read(&cmd_byte, 1, 1); if (cmd_byte == 0x80) { cmdid = ZsmEOF; } else { if ((cmd_byte >> 6) == 0) { cmdid = PsgWrite; } else if ((cmd_byte >> 6) == 0b01) { if (cmd_byte == 0b01000000) { cmdid = ExtCmd; } else { cmdid = FmWrite; } } else { cmdid = Delay; } } ZsmCommand output; output.id = cmdid; if (cmdid == ZsmEOF) { return output; } else if (cmdid == PsgWrite) { uint8_t value; file->read(&value, 1, 1); output.psg_write.reg = cmd_byte & 0x3F; output.psg_write.val = value; } else if (cmdid == FmWrite) { uint16_t _value; uint8_t *value = (uint8_t*)(void*)(&_value); uint8_t pairs = cmd_byte & 0b111111; output.fm_write.len = pairs; output.fm_write.regs = (reg_pair*)malloc((sizeof(reg_pair))*pairs); for (uint8_t i = 0; i < pairs; i++) { file->read(value, 2, 1); output.fm_write.regs[i].reg = value[0]; output.fm_write.regs[i].val = value[1]; } } else if (cmdid == ExtCmd) { uint8_t ext_cmd_byte; file->read(&ext_cmd_byte, 1, 1); uint8_t bytes = ext_cmd_byte & 0x3F; uint8_t ch = ext_cmd_byte >> 6; output.extcmd.channel = ch; output.extcmd.bytes = bytes; if (ch == 1) { output.extcmd.expansion.write_bytes = NULL; } else { output.extcmd.pcm = (uint8_t*)malloc(bytes); // Handles all other cases due to them being in a union, and each having the same type. } for (size_t i = 0; i < bytes; i++) { uint8_t byte; file->read(&byte, 1, 1); switch (ch) { case 0: { output.extcmd.pcm[i] = byte; } break; case 1: { if (i == 0) { output.extcmd.expansion.chip_id = byte; } else if (i == 1) { output.extcmd.expansion.writes = byte; output.extcmd.expansion.write_bytes = (uint8_t*)malloc(byte); } else { output.extcmd.expansion.write_bytes[i - 2] = byte; } } break; case 2: { output.extcmd.sync[i] = byte; } break; case 3: { output.extcmd.custom[i] = byte; } break; } } } else if (cmdid == Delay) { output.delay = cmd_byte & 0x7F; } return output; } ZsmCommand::~ZsmCommand() { switch (id) { case ExtCmd: { if (extcmd.channel == 1) { if (extcmd.expansion.write_bytes != NULL) { free(extcmd.expansion.write_bytes); } } else { free(extcmd.pcm); } } break; case FmWrite: { free(fm_write.regs); } } } void ZsmBackend::seek_internal(double position, bool loop) { switch_stream(0); file->seek(music_data_start, SeekType::SET); this->cpuClocks = 0.0; this->delayTicks = 0; this->ticks = 0.0; this->position = 0.0; while (this->position < position) { audio_buf.clear(); try { tick(false); } catch (std::exception) { switch_stream(0); file->seek(music_data_start, SeekType::SET); this->cpuClocks = 0.0; this->delayTicks = 0; this->ticks = 0.0; this->position = 0.0; return; } } size_t samples = std::min((size_t)((this->position - position) * PSG_FREQ), audio_buf.size()); while (samples--) { audio_buf.pop(); } this->position = std::floor(position * PSG_FREQ) / PSG_FREQ; } void ZsmBackend::seek(double position) { seek_internal(position, false); } double ZsmBackend::get_position() { return position; } int ZsmBackend::get_stream_idx() { return 0; }